
2Corresponding authors – undergraduate students at BITS Pilani, carried out work as interns at NetApp, Inc., Bangalore

HDFS Space Consolidation

Aastha Mehta*,1,2, Deepti Banka*,1,2, Kartheek Muthyala*,1,2 , Priya Sehgal1, Ajay Bakre1

*Student Authors
1Advanced Technology Group, NetApp Inc., Bangalore, India

2Birla Institute of Technology and Science, Pilani, India

Abstract

Recently, many corporate organizations
have started using private Hadoop clusters
to perform their tasks. Each of the Hadoop
cluster nodes consist of its local computing
and storage resources. There are many
instances in such corporate clusters where
significant amount of disk capacity on each
of these cluster nodes remains unused. In
this work, we consolidate the total idle disk
space in a Hadoop cluster and present it to
the client as an iSCSI LUN, which acts like
a reliable store. The client, who is outside
the Hadoop cluster, can store data in this
LUN via an iSCSI initiator. We leverage
Hadoop’s distributed file system (HDFS) at
the backend to distribute and maintain
appropriate replicas of data existing within
the LUN and recover from node or disk
failure through replica regeneration. Thus,
we achieve reliability of client data over the
consolidated HDFS space.

1. Introduction
There is an increasing popularity of open
source data management solutions using
technologies like Hadoop [2,3,5]. Hadoop
clusters typically employ commodity servers
with large amount of direct attached storage
(DAS) that can be used for distributed
computing tasks using the MapReduce
paradigm. HDFS is used to store the data
required by MapReduce jobs and to store its
results, which are replicated on the cluster
nodes for resiliency. Since DAS capacities
have gone up to TBs per node in today’s
commodity servers, it is possible that a
significant storage capacity remains unused
in the cluster. Currently it is not possible to

use the space available in Hadoop cluster
from outside the cluster because of two
limitations of the Hadoop Distributed File
System (HDFS) [6]:

 HDFS does not consolidate the whole
space available in the cluster.

 HDFS does not support over-writes.

In this work, we address these two
problems and allow access to the spare disk
capacity within the cluster for tasks, which
reside outside the cluster. The spare disk
space can be consolidated and exported as
an iSCSI LUN to the client. At the Hadoop
backend, the data written to the LUN can be
managed in the form of HDFS files.
Reliability can be achieved by replicating
the HDFS files appropriately on the data
nodes of the cluster.

This work is similar to MapR [13] Direct
Access NFS that allows access to the
HDFS namespace through NFS clients. The
only difference between MapR and our work
is that we export the HDFS space through
iSCSI, while they export it through NFS. The
main contributions of this paper are –

 We designed the solution architecture
for consolidation in distributed systems

 We implemented a translation layer on
top of HDFS, to enable client operations
in the consolidated space

Rest of the paper is organized as follows.
Section 2 provides details about the
previous work and explains the key
concepts. Section 3 explains the design of
our solution architecture and section 4

discusses about the performance of our
system. We conclude in Section 5 with
future work plan.

2. Background
In our previous approach, Usage of Idle
Space in desktops and laptops [1],
consolidated storage space was exported
from the hard disks of individual
workstations like user laptops. The iSCSI
target software was installed on each of
these laptops with the idle storage. The
iSCSI initiator on a client discovered the
iSCSI targets on the laptops and presented
them to the client as SCSI disks. The
volume manager at the client end then
configured RAID over these independent
disks. There are certain limitations of this
approach.
 This approach moves the onus of

consolidation to the client end software,
like a volume manager.

 It also depends upon the client to take
care of any data loss by having a RAID
solution over these discovered LUNs. If
a computer goes offline, the RAID
reconstructs the disk from the spare
pool. But this does not guarantee data
availability at all the times because there
can always be a window in which there
might be no spares available with the
system and the raid group just fails.

Sudarshan et. Al [12] worked on
aggregating unused space using their
Freeloader architecture. This architecture
primarily consisted of three types of nodes:

 Benefactor nodes: These nodes donate

the idle space from their local storage.
 Master nodes: These nodes manage the

metadata of the benefactor nodes.
 Client nodes: Applications running on

these nodes accessed the storage
provided by the benefactor nodes.

This architecture exposes API’s like put(),
get(), FL_open(), FL_write(), FL_read(),
FL_close() etc.. to allow access to the data.
POSIX compliant applications cannot be
readily deployed in this environment
because they are limited to use APIs that
freeloader provides.

Our work is similar to Kartheek, et.al [1] and
Sudarshan et al[12], as we consolidate the
space amongst a bunch of nodes, but the
onus of reliability and space consolidation
resides with the space provider, which in
our case is the Hadoop Distributed File
System (HDFS) [6] and not shifted to the
client (iSCSI initiator). And the supportability
to posix compliance is provided by the
inbuilt fuse-dfs component of Hadoop.

Figure1: Design architecture

Hadoop [2,3,5] is an Apache Project and it
provides a distributed file system for the
analysis and transformation of very large
datasets using MapReduce [4] paradigm.
HDFS is the file system component of the
Hadoop. It works at a layer above the local
file system and exposes HDFS API’s to
applications. HDFS stores file system
metadata and application data separately. It
stores the file system metadata on a
dedicated server called namenode like most
of the distributed file systems like
PVFS[7][8], Lustre[9] and GFS[10]. All the
application related data is stored on data
nodes. In contrast to Kartheek’s [1] solution,
reliability overhead now resides completely
with the name node. HDFS protects data by
maintaining replicas of same data on
different data nodes. We leverage the
reliability feature inherent in HDFS to
provide a reliable consolidated space to the
client.

3. Design
Figure 1 shows the architecture of our work.
It consists of a Hadoop cluster of x nodes
with HDFS. One node is a namenode,
denoted by N, and all the nodes are
datanodes, denoted by D. HDFS is not
POSIX compliant. Therefore, a FUSE file

system, called Fuse-DFS [11] is
implemented, that mounts HDFS and
translates POSIX file system calls to HDFS
calls and vice-versa. As shown in the figure,
we use a modified version of Fuse-DFS on
one of the nodes (mostly namenode), to
consolidate the entire space available on
the Hadoop cluster and export it as a single
large file. The iSCSI target software
installed on the namenode exports this large
Fuse/HDFS file as a LUN to the client.

The client has iSCSI initiator software
installed on it. The initiator discovers the
LUN exported by the target and presents it
as a block device. The client can create a
file system directly on this block device.
Alternately, it can ask the volume manager
to create software RAID with other
discovered LUNs, and then create a file
system on that volume.

To achieve this high level architecture, we
had to resolve two main problems. Firstly,
the basic task was to consolidate the space
available in HDFS cluster and expose it as a
big block device. Secondly, the initiator’s
volume manager requires creating a file
system on top of this consolidated space.
The client operations will involve

Figure 2: Translation logic

disk

modifications to its already created files.
However, HDFS does not allow appends or
over-writes to existing files [14] in its
namespace. Hence, we need to provide
support for over-writes in a different layer
than HDFS.

To address these problems we introduced
translation logic in Fuse-DFS. For the rest of
the document, we call the modified Fuse-
DFS as Fuse-DFS*. When Fuse-DFS* is
first started, it identifies the LUN names to
expose by parsing the ietd.conf file. In our
work, one iSCSI target present on one node
exposes only one LUN. Fuse-DFS*
consolidates the space and makes it
available as this LUN name. Next, iSCSI
target starts with the LUN name and queries
Fuse-DFS* about the size of the LUN. Fuse-
DFS* returns the size of the entire space
available on HDFS, although there is no
physical file with the LUN name present in
HDFS. This modification helps to
consolidate the space.

To allow over-writes in HDFS without
changing HDFS itself, we modified Fuse-
DFS. The iSCSI LUN, i.e. the consolidated
space, is internally broken into fixed size
chunks, called LUN chunk files, by Fuse-
DFS*. The size of the chunk file is
independent of the size of iSCSI data
blocks, and is a configurable parameter.
Typically it should be a multiple of the HDFS
block size which is the basic unit of
allocation in HDFS. Bigger chunk size
enables transfer of more amount of data in
one operation, thus minimizing the effect of
disk seek latencies. On the other hand, for
every change of even 1 byte to a chunk the
entire chunk has to be modified. In this
case, a larger chunk size will increase the
write overhead. We are currently
experimenting with chunk size less than
HDFS block size and different multiples of
HDFS block size.

The translation logic maps iSCSI data
blocks to chunk files, which are then
mapped to HDFS files. It maintains the
metadata for all chunk files in memory in a

table, called file table, which is indexed by
the chunk number. The metadata contains a
handle for the HDFS file corresponding to
the chunk file along with other information
like file size, open mode, etc.

The client operations are sent by the
initiator to iSCSI target in form of CDBs
(command data blocks). The command
received at iSCSI target contains the SCSI
request in the form of <op, offset, size>.
Here op defines read or write operation,
offset defines the start offset into the LUN
for the op, and size defines the number of
consecutive bytes to be read or written from
offset into the LUN. The translation logic
indexes into the file table using offset. If the
op is a write and if there is no file handle in
the indexed chunk record, the request is to
write new data in the chunk file i.e. create a
new corresponding HDFS file. Fuse-DFS*
calls create function to handle the request. If
the write request indexes into a chunk
record with an existing file handle, it
indicates an over-write request. In this case,
Fuse-DFS* first accesses the file using the
file handle from file table, and reads its
contents into a buffer in memory. It performs
the over-write into this buffer and then calls
write to create a new HDFS file. It deletes
the old version of the file and updates the
metadata in the file table for new file, and
the file handle to point to the new file.

4. Performance

We compared the performance of Fuse-
DFS* including our translation logic with the
performance of unmodified Fuse-DFS. We
configured a one node Hadoop cluster
formatted with HDFS. The node thus acts
as both namenode and datanode. In one
case, we installed Fuse-DFS* on top of
HDFS and in another, we installed
unmodified Fuse-DFS on top of HDFS. We
used simple micro benchmarks for read and
write operations on both setups and
recorded latency and throughput of the
setups. We performed the I/O for chunk size
of 4096 bytes and file sizes ranging from
4096 bytes to 2GB. We have not involved

iSCSI target and initiator software layers in
our experimentation. This is because the
control experiment consisting of unmodified
Fuse-DFS cannot consolidate the disk
space under HDFS and export via iSCSI.

Our translation adds significant overhead to
the original Fuse-DFS code. This is
because we are using a sub-optimal chunk
size of 4096 bytes while HDFS block size is
64MB. However, we are currently working to
improve the performance of our entire
system including the Fuse-DFS*, the iSCSI
target and initiator software layers as a
whole. We are experimenting with various
sizes for chunk files to find a size optimal for
acceptable I/O throughput and latency.

5. Conclusion
We have successfully addressed the
problem of consolidating space by
leveraging HDFS architecture and by
solving the problem of read-modify-write
with our fuse translation layer.

In future, we plan to experiment with
different chunk sizes and compare its
impact on both read and write performance.
We also plan to improve the performance of
the total system including the iSCSI layers.

References
[1]. Kartheek Muthyala, Ajay Bakre. Usage
 of Idle Space in Desktops and Laptops.
 Poster session presented at: Grace
 Hopper Conference, 2010 Dec 8; India.

[2]. Apache Hadoop
 http://hadoop.apache.org/

[3]. J. Venner, Pro Hadoop. Apress, June
 22, 2009, 440 pages, ISBN:
 1430219424

[4]. J. Dean, S. Ghemawat, “MapReduce:
 Simplified Data Processing on Large

Clusters,” In Proc. of 6th Symposium on
Operating Systems Design and Imp-
lementation, San Francisco CA, Dec 04.

[5]. T. White, Hadoop: The Definitive Guide.
 O'Reilly Media, Yahoo! Press, June 5th,
 2009.

[6]. Konstantin Shvachko, Hairong Kuang,
 Sanjay Radia, and Robert Chansler.
 The Hadoop Distributed File System. In
 Proceedings of the 26th IEEE
 Symposium on Massive Storage
 Systems and Technologies (MSST ’10),
 Incline Village, Nevada, May 2010.
[7]. P. H. Carns, W. B. Ligon III, R. B. Ross,
 and R. Thakur. “PVFS: A parallel file
 system for Linux clusters,” in Proc. of
 4th Annual Linux Showcase and
 Conference, 2000, pp. 317–327

[8]. W. Tantisiriroj, S. Patil, G. Gibson.
 “Data-intensive file systems for Internet
 services: A rose by any other name ...”
 Technical Report CMUPDL-08-114,
 Parallel Data Laboratory, Carnegie
 Mellon University, Pittsburgh, PA,
 October 2008.

[9]. Lustre File System. http://www.lustre.org

[10]. M. K. McKusick, S. Quinlan. “GFS:
 Evolution on Fast-forward,” ACM
 Queue, vol. 7, no. 7, New York, NY.
 August 2009.

[11]. FUSE–DFS
http://wiki.apache.org/hadoop/MountableHD
FS

[12]. S. Vazhkudai, X. Ma, V.W. Freeh, J.W.
 Strickland, N. Tammineedi, and S. L.
 Scott, "FreeLoader: Scavenging
 Desktop Storage Resources for
 Scientific Data", in Proc. SC, 2005.

[13] MapR http://www.mapr.com/

[14] Cloudera blog
http://www.cloudera.com/blog/2009/07/file-
appends-in-hdfs/

