
Batch systems: Optimal scheduling and
processor optimization

Rushi Agrawal∗†‡ and Vaishali Sadaphal‡
∗Student Author

†Indian Institute of Technology Hyderabad, Hyderabad, India
‡Tata Research Development and Design Center, Pune, India

Email: rushi@iith.ac.in, vaishali.sadaphal@tcs.com

Abstract—In this paper, we define various prob-
lems encountered in batch processing in modern
enterprise systems. We focus our attention on
scheduling of batch jobs on multi-processor systems
such that the batch finishes in minimum time with
minimum resource utilization. The contribution
of this paper is two folds: (1) study properties
of dependency graph of batch jobs to identify
that for fat graphs the state-of-the-art CP/MISF
(critical path/most immediate successors first)[1]
scheduling algorithm computes near optimal sched-
ules; (2) further, we propose an efficient graph
pre-processing method to shorten the time taken
to compute schedule of batches that have dense
dependency graphs. We show that an overall gain
of 0 - 50% in the execution time is achieved by
pre-processing.

I. INTRODUCTION

Data centers typically cater to two types of
workload: transactional and batch. The transac-
tional workload is processed in real-time and
needs to meet per-request service level objectives
(SLOs) defined on metrics such as response time.
The batch workload, on the other hand, consists
of jobs such as data consolidation, data compli-
ance checks, maintenance jobs, etc. The desired
performance of a batch workload is defined by
metrics such as the batch completion time (time
within which all batch jobs should be completed)
and peak resource requirements. The past lit-
erature contains a lot of work on performance
and capacity analysis of transactional systems [2],
[3]. Analysis of batch workloads, though equally
important, has received relatively lesser attention.
In this paper, we focus on analysis of batch
processing systems.

Both transactional and batch systems need an-
swers to similar questions such as: what is the

cause of delay in completing a transaction or
a batch?, what is the capacity of the system
- How much resource is available?, how much
more workload can be processed in the available
resource?, etc. Though there are commonalities
between performance and capacity analysis of
transactional and batch systems, the problem of
scheduling of jobs is specific to batch systems.

A typical batch system is characterized by:
(1) A set of jobs: each job is characterized by
its execution time. (2) Precedence or dependency
relationships: a job can not start unless and un-
til each and every job on which it is depen-
dent is completed. The dependency relationship
is represented as a directed acyclic graph. (3)
Batch completion time constraint: batch execution
should finish before batch finish time, tbc ≤ Tbc,
where tbc is the time required to complete the
batch and Tbc is maximum time before which
the batch must finish. (4) Resource constraint:
there is a threshold on the maximum amount of
resources that could be used at a point of time.
In other words, pres ≤ Pres where pres is the
peak amount of resource used at any point of time
and Pres is the maximum threshold beyond which
the resource utilization should not exceed. Any
additional use of resource beyond the threshold
results in additional financial charges.

Scheduling jobs to meet the batch completion
time constraint and resource utilization constraint
simultaneously is a challenging task. Work has
been done in the past on scheduling of mul-
tiprocessor systems and batch systems. [1],[4]
addresses scheduling of processes on the multi-
processor systems. Work has been done in the
area of multiprocessor systems where the pro-
cessing speeds of processors is not equal [5]. [6]
explores using frequently occurring subgraphs for



computing schedules.
In Section II, we discuss in detail various

versions of scheduling problems related to batch
system. We also identify contribution of the paper
in this section.

II. SCHEDULING OF BATCH SYSTEMS

The batch systems run on different types of
infrastructures, viz. multiprocessor systems or
mainframes. In multiprocessor systems, each pro-
cessor may provide equal fixed CPU cycles/sec,
or processors may provide unequal CPU cy-
cles/sec. The execution time of each job is depen-
dent upon how much CPU cycles/sec are provided
to it. In case of multi-processor system with equal
and fixed CPU cycles/sec the execution time of
job is independent of the processor on which
it is scheduled to run. This makes scheduling
simpler than in the case of multi-processor system
with unequal CPU cycles/sec. In case of multi-
processor systems with unequal CPU cycles/sec,
the execution time of a job depends upon the
processor on which it is scheduled to run. In
this case the possibilities of scheduling jobs mul-
tiply exponentially. In mainframes, there is a
provisioning of maximum CPU cycles or MIPS
(millions of instructions per second) that could be
provided at a point of time. Mainframes are also
responsible for introducing the concept of LPARs:
Logical PARtitions on the processing unit which
provides separation and different speeds for pro-
cesses to execute on them.

In case of each of the above infrastructures, dif-
ferent issues need to be addressed while schedul-
ing jobs. In the following section we discuss
various problems related to scheduling in batch
systems.

A. Multiprocessor environment: Minimize the
batch completion time given fixed number of
processors

The most common requirement of batch sys-
tems is that the batch is required to be scheduled
such that it satisfies the batch completion time
constraint within the available resource. This is
problem can be formulated as an optimization
problem: Given, (1) a set of n jobs, j1, j2, . . . , jn,
(2) execution times of jobs, t1, t2, . . . , tn, (3) di-
rected acyclic graph as dependency relationships,
G(V,E) such that V = {j1, j2, . . . , jn} and E
specifies dependence between jobs. (4) a fixed

Fig. 1. A directed acyclic dependency graph with a
redundant edge between j1 and j3.

number of identical processors, P , minimize the
batch completion time, tbc.

The edges in the dependency graph signifies
the partial ordering of the graph. In simpler
words, a job cannot be scheduled before all of its
immediate predecessors have finished execution.
In Figure 1, j5 cannot be scheduled before j2, j4
and j3 finish execution. This problem is an NP-
Hard problem [7].

B. Incremental computation of schedules

The batches in modern enterprise systems
change every day. The workload of the jobs
changes. The dependency relations between the
jobs change. However, it has been noticed that
the change in the dependency relationship may
not be very large. Subgraphs in the dependency
graph may repeat. The execution time of only a
few of the jobs may change and for most of the
jobs it may remain the same [6].

In case of small scale changes, it should be pos-
sible to compute schedules incrementally with-
out processing the complete dependency graph.
Incremental computation of schedules or com-
puting schedules only for a subgraph needs to
be explored. It should be possible to answer
following questions efficiently without requiring
computation of overall schedule: Is it possible to
re-compute schedule efficiently if (1) workload of
only a few nodes change, (2) workload of nodes
of a subgraph changes, (3) a node is added/deleted
to/from the batch system, (4) a subgraph of nodes
is added/deleted. There is a need to explore effi-
cient methods to answer the above problems. Ap-
proaches which involve analyzing past history of
graphs, analyzing frequently occurring subgraphs,
pre-computation of their schedules may be used



to possibly pre-compute schedules as well. We
propose to address this in future.

C. Mainframe environment

In case of mainframes, a pool of CPU cy-
cles/sec with threshold on maximum CPU cycles
that can be used at a point of time is given.
Batches may run on different LPARs. And each
LPAR may have different maximum MIPS allo-
cated to it. A batch can be scheduled on an LPAR
with higher or lower speed of execution in order
to minimize the batch completion time. Separate
CPU cycle provisioning to LPARs, flexibility of
assigning jobs to LPARs with different speeds,
and meeting batch completion time and resource
constraint throws various challenges in scheduling
jobs optimally on mainframes. We propose to
address these problems in the future.

III. SCHEDULING IN MULTI-PROCESSOR

SYSTEMS

In this section, we look at the problem defined
in Section II-A in greater detail. At the end of the
day, the operators have an understanding of jobs
in their batch and their dependencies. As a result,
full schedule can be computed before actually
assigning (possibly unfitting) jobs to processors.
As the problem is strongly NP-hard, computation
of optimal schedule is infeasible.

CP/MISF algorithm, the best algorithm known
so far, generates priority of jobs statically, based
on the ‘maximum execution path length’: the
costliest path to the end node in the dependency
graph with respect to time. For example, for job a
with execution time ea, if there are only two paths
to the end node z in the dependency graph: paths
a→b→c→z and a→d→z, with nodes b, c, d,
having execution times eb, ec and ed respectively,
the longest path execution time will be maximum
of (eb+ec) and (ed).

A. Approach

The calculation of ‘maximum execution path
length’ for each node in the precedence graph
makes the complexity of CP/MISF algorithm
proportional to E2 where E is the number of
edges in the graph. This makes the execution
time consuming for graphs with large number
of edges. On some of the precedence graph of
more than 1000 nodes from batch systems of data
centers of a financial bank, CP/MISF algorithm

took almost two hours to calculate schedule. In
such cases, we propose to pre-process graphs to
compute schedules more efficiently. We propose
that dense graphs be pre-processed by removing
the ‘redundant edges’ to reduce the execution
time of CP/MISF algorithm. We show that overall
gain of 0-50% in the execution time is achieved.

B. Redundant edge removal

Batch graphs created from enterprise batch data
usually contain hundreds of nodes with thousands
of edges. Of these edges, a significant number of
edges contain redundant information. In the graph
1, the edge j2 →j5 is redundant as the informa-
tion portrayed by this edge is already contained
in other two edges (j5 is to be scheduled after j4
already implies that j5 is scheduled after j2 as j4
is to be scheduled after j2). Refer figure 1.

We propose an algorithm to remove all the
redundant edges from a batch graph. We measure
the performance of our algorithm on the collec-
tion of task graphs given in Standard Task Graph
[8], and present the results in the next section.
The proposed algorithm first selects edges which
are potential candidates for redundancy, and then
checks whether the selected edge can actually be
harmlessly removed.

Algorithm: For a batch graph G of n
nodes, let j1, j2,. . . jn represent the nodes of the
graph. We first calculate the topological ordering
of nodes and save the node ids in the topological
order in a list T. Also, along with finding out the
order of topological sort, we calculate the ‘level’
of each node in the graph. A level of a node is
the longest path from the start node to the current
node. We represent level of a node i by levi. The
in neighbour() function returns list of all the
immediate predecessors of the argument node.

for i in T do
for j in in neighbour(i) do

if levj < levi−1 then
remove if redundant(i, j)

end if
end for

end for
The remove if redundant(a, b) function es-

sentially implements breadth first search algo-
rithm: disregarding the edge j→i, the breadth-first
search starts from node i in reverse. The search
stops when node j is found, or all the nodes found
so far have level greater than or equal to levj



Fig. 2. Effect of number of edges on gain in execution
time: (a) 300 nodes, (b) 500 nodes.

IV. EXPERIMENTS AND RESULTS

A. Dependence of deviation of schedules on
graph parameters

Although CP/MISF gives the results very close
to the optimal value in a comparatively very small
time, it is worth studying the pattern - if any
- of how much the algorithm deviates from the
optimal with respect to the change in the graph
properties.

We generated directed acyclic graphs based on
the following parameters: (1) fatness, (2) density
and (3) number of nodes[9]. Fatness of the graph
is defined as the inverse of the number of levels in
the graph; density of a graph is the ratio of actual
number of edges in the graph to the maximum
number of edges that are possible for the graph
with same number of nodes. The default values
of parameters are: (1) fatness, f : 0.5 (2) density,
d: 0.5 (3) number of nodes/jobs: 100.

For all these graphs, we calculated schedule
lengths with two identical processors. We calcu-
lated by how much amount (in percentage dif-
ference from the optimal) the schedule generated
by CP/MISF algorithm deviate from the optimal
value. As we generated thousands of graphs, it
was not feasible to calculate optimal schedules for
all the graphs, so we used lower bound [10] as the
optimal value for each of these graphs. The lower
bound gives results very close to the optimal value
for graphs with few hundred of nodes. For all 180
graphs of Standard Task Graph [8] of each of
50, 100, 300, and 500 nodes, for which optimal
schedule was provided on [8], the lower bound
gave values equal to the optimal schedule. In
order to make the data appear more meaningful,
for each set of parameters, we generated 10
graphs, and averaged the value of the deviation
from optimal schedule.

Effect of density of the graph: Figure 3(c)
shows a plot of density vs. deviation from optimal
or error, e for fatness 0.4, 0.5, and 0.6. It can be

observed that the error increases with increasing
density of the graph. However, as the fatness
increases, the error reduces. The reason for this
trend can be explained in the following manner:
for fixed fatness, the number of levels in a graph
are same; but increase in density will introduce
more number of edges in the graph and therefore
increases the number of paths (or in other words,
the number of possible schedules) in the graph.
As CP/MISF algorithm tries to select a schedule
very close to optimal, the increase in density
increases the number of schedules to pick from
resulting in the decrease in the accuracy of the
algorithm.

Effect of fatness of the graph: From figure
3(b), it can be observed that when the fatness of
the graph is small and large the error is small.
When the fatness is very low, the graphs tends
towards a linear chain of nodes. As the number
of edges in the graphs for same fatness is nearly
the same, such a form of graph has relatively
less number of possible schedules, thereby giving
a very less chance for the algorithm to select
a schedule very far from optimal value. When
the number of fatness is very high, following
reason can be attributed to the behaviour: at any
instant in the execution of schedule generation,
the number of available jobs is very high as
compared to the number of idle (‘schedulable’)
processors. As a result, the generated schedule
has a processor idle for an extremely small frac-
tion of the total execution time. The optimal
schedule is no different. This means that there
are a large number of schedules, but all those
schedules also lie very close to the optimal value,
which results in the depicted trend.

Effect of size of the graph: The plot in figure
3(a) depicts the error in the schedule decreases as
the size of the graph increases. The percentage er-
ror in the schedule is the actual error in time units,
divided by the length of the optimal schedule. As
the number of nodes increase keeping all the other
parameters same, the optimal schedule increases
linearly; so, although the actual deviation from
optimal is still of the same order, the large de-
nominator makes the percentage deviation appear
small. However, even in case of larger graphs, if
the fatness > 0.5, the error is small for the reasons
mentioned in the above section.

Thus, we conclude that the CP/MISF algorithm
gives near optimal results for fat graphs.



Fig. 3. Effect of (a) number of nodes, (b) fatness, (c) density on the accuracy of schedule.

B. Benefit in execution time by pre-processing the
graph

We implemented and ran the algorithm for
all of the 300-node 180 graphs of Kasahara’s
Standard Task Graph dataset [8]. As we found
out, the graphs from which more number of edges
were removed gave up to 50% increase in total
execution time. A clear relationship between the
number of edges in the original graph and the
computational speed-up can be seen from the
graph Figure 2 (a),(b).

Figure 2 shows the plot of number of edges
and gain in execution time in percentage by pre-
processing the graph of size (a) 300 nodes and
(b) 500 nodes. It can be observed that the gain
in execution time is positive for graphs with ratio
of number of nodes to number of levels in the
graph greater than 13 for a graphs of 300 jobs,
and greater than 15 for graphs with 500 jobs. We
propose to take a decision of pre-processing the
graphs based on this metric: ratio of number of
nodes to the number of levels in the graph.

V. CONCLUSION AND FUTURE WORK

In this paper, we addressed various problems in
batch systems. We addressed problem of schedul-
ing and optimizing the resources in detail. We
address the problem of scheduling of batch jobs
on multi-processor systems. Our contributions is
three folds: (1) We study the graphs properties of
the dependency graph and observe that for the fat
graphs the state-of-the-art algorithm (CP/MISF
[1]) gives near optimal results and there is no
need to run the computationally intensive optimal
algorithm. (2) Further, we propose an efficient
method of computing schedules of batches that
have dense dependency graphs. (3) We propose

that the graphs be pre-processed to reduce the
execution time of CP/MISF algorithm. We show
that overall gain of 0-50% in the execution time
is achieved by pre-processing.

In future, we plan to address better methods of
computing schedules using dynamic information.
We also propose to address computing schedules
incrementally when a portion of the dependence
graph changes. We also plan to address schedul-
ing problem and MIPS optimization in mainframe
environment.

REFERENCES

[1] H. Kasahara and S. Narita, “Practical multiprocessor
scheduling algorithms for efficient parallel processing,”
in IEEE Transactions on Computers, 1984.

[2] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A.
Maltz, and M. Zhang, “Towards highly reliable en-
terprise network services via inference of multi-level
dependencies,” in Sigcomm, 2007.

[3] S. Kandula, R. Mahajan, P. Verkaik, S. Agarwal, J. Pad-
hye, and P. Bahl, “Detailed diagnosis in enterprise
networks,” in SIGCOMM, 2009.

[4] P. Rebreyend, F. E. Sandnes, and G. M. Megson,
“Static multiprocessor task graph scheduling in the
genetic paradigm: A comparison of genotype represen-
tations,” tech. rep., 1998.

[5] R. Righter and S. H. Xu, “Scheduling jobs on non-
identical ifr processors to minimize general cost func-
tion,” in Advances in Applied Probability, Vol. 23, No.
4, pp. 909-924, 1991.

[6] S. Patil, M. Natu, V. Sadaphal, and H. Vin, “Analyz-
ing batch processing systems using frequent subgraph
discovery,”

[7] J. K. Lenstra and A. H. G. R. Kan, “Complexity of
scheduling under precedence constraints,” in Oper. Res.
vol. 26, 1978.

[8] STG, “www.kasahara.elec.waseda.ac.jp/schedule/,”
2011.

[9] DagGen, “www.loria.fr/ suter/dags.html,” 2011.
[10] E. B. Fernandez and B. Bussell, “Bounds on the num-

ber of processors and time for multiprocessor optimal
schedules,” in IEEE Transactions on Computers, Vol.
C-22, NO. 8, 1994.


