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Abstract

We have been developing a declarative approach to writing parallel programs, in a language
called Kanor, with the goal of addressing the productivity challenge in parallel programming.
A guiding principle in the design of our approach has been to abstract away those details that
a compiler can feasibly and effectively handle, while still affording the programmers the ability
to optimize their parallel programs. A critical job of the compiler is to optimize communication
in the parallel program in the context of the surrounding computation. In this paper, we
demonstrate that it is possible to perform advanced optimizations in such a compiler by devising
an algorithm that identifies software pipelining opportunities in a program written with Kanor
and generates software pipelined code for a cluster, using MPI.

1 Introduction
Writing parallel programs for high performance is widely regarded to be difficult and error-prone.
Experience with parallel programming languages and compilation technology has shown that bal-
ancing demands from users having widely varying expertise with practicable compiler techniques is
a difficult issue [9]. We have strived to address some of those issues with our declarative language,
called Kanor, aimed at improving the productivity of parallel programmers. Kanor is designed to
be a domain-specific language (DSL) embedded in a host language (currently C/C++), which is
used to declaratively specify communication [7]. The goal of the language is to allow users to write
explicitly parallel programs so that they are not only encouraged to “think in parallel”, but also
enjoy a greater control over the execution of their program than implicitly parallel languages could
provide, enabling finer performance tuning. At the same time, the Kanor compiler eliminates the
need for manually carrying out communication optimization, such a communication-computation
overlap, greatly improving the program’s readability and portability. Declarative specification of
communication also opens up opportunities for formal analysis of the parallel program, letting the
compiler provide correctness guarantees, such as freedom from deadlocks. The BSP style Kanor
approach is better than low level message passing[5].

One of the key optimization techniques in high performance parallel programs is software
pipelining. Compiler support for pipelining varies across languages[11]. Pipelining is especially
useful in cases where there are cross-processor data dependencies that limit parallelism, as the
receivers wait for the senders to finish. Strip-mining the computation creates a pipeline, leading
to parallelism that did not exist in the original form of the code. In this paper we present an
algorithm that transforms Kanor programs into pipelined MPI programs. The algorithm first iden-
tifies the cases where opportunities for software pipelining might exist and then transforms the
communication and its dependent computation to take advantage of the pipeline. It is a part of
our under-development Kanor-to-C++ compiler, which is written using the ROSE compiler frame-
work [12]. We evaluate the performance of our algorithm on three benchmarks that are amenable
to software pipelining.

*Student author.
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A[j]︸ ︷︷ ︸
storage
location

@ i︸ ︷︷ ︸
receiver
rank

<<=︸ ︷︷ ︸
reduction
operator

B[i]︸ ︷︷ ︸
data

@ j︸ ︷︷ ︸
sender
rank

where i in world,︸ ︷︷ ︸
generator

j in {0...i},︸ ︷︷ ︸
generator

i%2 == 0︸ ︷︷ ︸
filter

Figure 1: Kanor syntax.

2 Software Pipelining in Kanor
Kanor was motivated by applications written primarily in the Bulk-Synchronous Parallel (BSP)
style [13]. Therefore, BSP-style applications are the most common use case for Kanor. A commu-
nication step is of the form {e0@e1 << op << e2@e3 where e4} enclosed within a block marked
@communicate. Communication steps are embedded in the host language and respect its seman-
tics. The operator op can be any general reduction operation defined by the user, as long as it
is commutative and associative. The expression e4 may contain multiple clauses, as illustrated
by the example in Figure 1. The example uses the special syntax <<= for the most commonly
occurring “reduction”, which is data copying. The set comprehension syntax within the where
clause emphasizes the fact that all communication in one @communicate block is parallel, thus
free of dependencies that might cause serialization.

In order for a communication step to lead to software pipelining, certain conditions must hold.

Global knowledge case All free variables in the @communicate block must evaluate to the
same value on all processors (we refer to this as the global knowledge case [7]). This means that no
free variable is rank- or I/O-dependent. The compiler performs information flow analysis to make
this determination. The dependence may be due to either data or control.

Sending and receiving ranks All processors must take part in communication. Specifically,
for N processors, senders ∈ {0. . .N − 2}, and receivers ∈ {1. . .N − 1}. To verify this, the compiler
analyzes the filters in the where clause, which are boolean conditions on the rank variables. The
filter conditions, formulated as a constraint satisfaction problem, must have a solution such that
sender ranks ∈ {0. . .N − 2} and receiver ranks ∈ {1. . .N − 1}. Strictly speaking, not all processors
need to participate in a communication step for software pipelining to be useful, only a sufficiently
large number of them. However, a collective communication operation involving all processors is a
common case in most current data-parallel applications.

Directional communication We require that there exist a total ordering of processor ranks
(say, denoted by ≺), such that p sends data to q ⇒ p ≺ q. Unconstrained communication patterns
can substantially complicate the problem of determining whether all the data flows in a single
direction. Fortunately, most practical applications that can benefit from software pipelining follow
simple communication patterns. Nevertheless, multi-dimensional processor grids—common in high-
performance code—make the problem non-trivial to solve. An imprecise test that works in practice
is verifying that the data flows in only one direction individually along each processor dimension.
If it does then the overall data movement is also in a single direction. If it does not, there might
still be a total ordering of processors that results in a directional movement of data, however we
interpret the outcome to mean that software pipelining does not apply.

Granularity of communication Since we are primarily interested in coarse-grained software
pipelining that is useful on clusters, it is desirable to have larger granularity of communicated data.
Thus, we assume that communication has already been aggregated where possible [1]. Only those
communicate steps are candidates for software pipelining where the communicated data size, after
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1 Algorithm: Generate Software Pipeline

2 Input: Code region, C; Communicate block, B; Strip-mining factor, S; Dependence graph, G
3 Output: Software pipelined code

4 F ← empty set of loops
5 F ← Strip-mine B
6 for each loop, L ∈ C, that uses B’s send or receive buffer do
7 F ← F ∪ Strip-mine L

8 F ′ ← typed-loop-fusion(F , G) // apply Allen and Kennedy’s algorithm [1]
9 abort, if fusion fails

10 return C, with F replaced by F ′

Algorithm 1: Algorithm to generate software pipelined code from Kanor.

aggregation, is “sufficiently” large1.
Once a candidate @communicate block has been identified, the compiler uses Algorithm 1 to

generate pipelined code. It takes the communicate block and its surrounding code block, which
it will attempt to pipeline. The algorithm also takes the strip-mining factor as a parameter. We
leave determining the exact value of this factor for future work.

Figure 2 shows examples of the benchmarks we studied, and the pipelined version for one
of them. Note that the transformed code is still in Kanor, not MPI. The code is eventually
translated into MPI through a sequence of steps that have been omitted here for the sake of
brevity. Correctness of the transformation follows from the observation that it is always legal to
strip-mine communication, as well as element-wise array computation, and from the correctness of
Allen and Kennedy’s loop-fusion algorithm.

3 Experimental Evaluation and Discussion
We studied three well-known kernels used in high performance numerical applications, iterative
Jacobi, Cholesky factorization, and Sweep3D. Each of these kernels operates on dense matrices
and is amenable to software pipelining, but each exhibits distinct communication and computation
patterns.

Figure 2 shows how each of the benchmarks is coded in Kanor. The figure also shows the
resulting software pipelined code after applying Algorithm 1 on one of the benchmarks (Sweep3D).
The code in the figure uses a two-dimensional virtual processor grid, to keep it simple for the sake
of exposition. Pipelined versions of others are similar and have been omitted for the sake of brevity.

Performance benefits of software pipelining are well-established. Therefore, a higher perfor-
mance from pipelined code should be expected. However, in order to gain maximum possible
benefit the compiler will need to account for the target platform characteristics to choose an appro-
priate blocking factor or even decide when software pipelining could be advantageous. We expect
to incorporate a cost model into the Kanor compiler to equip it to make platform-specific decisions.

Since Kanor is designed to target clusters as well as shared memory architectures [8], software
pipelining decisions may be dramatically different depending on the availability of shared memory
for inter-process communication. For example, lower inter-process communication latencies with
shared memory may make software pipelining worthwhile in a larger set of scenarios.

4 Related Work
Early work on software pipelining in compilers focused on pipelining across loop iterations for
instruction-level parallelism [10]. Recently, streaming languages, such as StreamIt, have imple-

1Determining the right threshold data size is an orthogonal problem, which is outside the scope of this paper.
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1 do {
2 /* Local matrix expanded by shadow columns/rows to store remote values */
3 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
4 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
5 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
6 @communicate {xlocal[M]@(x,y-1) <<= xlocal[1]@(x,y) where x, y in {0...N-1}}
7 compute_interior_and_diffnorm(xlocal, &gdiffnorm);
8 // all-reduce
9 @communicate {gdiffnorm@dest_rank << sum << diffnorm@src_rank

10 where dest_rank, src_rank in {0...N-1};}
11 gdiffnorm = sqrt( gdiffnorm );
12 itcnt++;
13 } while(diffnorm > 1.0e-2 && itcnt < 100);
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1 for (int curr_col = 0; curr_col < MATSIZE; curr_col++) {
2 if (owns(myid, curr_col)) {
3 // If I own the current column then compute
4 for (int k = 0, k < curr_col; k++) { // previous columns
5 for (int i = curr_col, i < MATSIZE; i++) { // rows of current column
6 A[i][j] -= temp_cols[i][k] * temp_cols[j][k];
7 }
8 }
9 A[curr_col][curr_col] = sqrt(A[curr_col][curr_col]);

10 for (int k = curr_col + 1; k < MATSIZE; k++) { // update current column
11 A[k][curr_col] /= A[curr_col][curr_col];
12 }
13 }
14 @communicate {temp_cols[][x]@(x+i) <<= A[][curr_col]@x
15 where x in {0...N-1} and i in {1...(N-1-x)} and owns(x, curr_col)}
16 }
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1 for (int i = 0; i < OCTANTS; i++) {
2 for (int j = 0; j < ANGLES; j++) {
3 // loop though the diagonals, N is the number of processors
4 for (int diag = 0; diag < 2 * N + 1; diag++) {
5 if ((myid.x + myid.y) == diag) { compute(); } /* wave front */
6 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, y)
7 where x, y in {0...N-1} and x + y = diag;}
8 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]@(x, y)
9 where x, y in {0...N-1} and x + y = diag;}

10 }}}
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1 for (int i = 0; i < OCTANTS; i++) {
2 for (int j = 0; j < ANGLES; j++) {
3 for (int s = 0; s < min(SIZE, s + BLOCK_SIZE); s+=BLOCK_SIZE) {
4 // loop though the diagonals, N is the number of processors
5 for (int diag = 0; diag < 2 * N + 1; diag++) {
6 if ((myid.x + myid.y) == diag) { strip_mined_compute(); }
7 @communicate {temp_s@(x, y+1) <<= A[lastrow]@(x, y)
8 where x, y in {0...N-1} and x + y = diag;}
9 @communicate {temp_e@(x + 1, y) <<= A[][lastcol]@(x, y)

10 where x, y in {0...N-1} and x + y = diag;}
11 }}}}

Figure 2: Jacobi, Sweep3D, and Cholesky kernels in Kanor, and Sweep3D pipelined.
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mented coarse-grained software pipelining [4]. However, these languages usually have a more re-
strictive programming model than Kanor, with emphasis on streaming applications.

Software pipelining has also been studied in the context of PGAS (Partitioned Global Address
Space) languages, including X10, UPC, and HPF [2, 3, 6]. Fortran D compiler identified cross-
processor loops and tried to strip-mine them [6]. Even though similar in its goal, our analysis occurs
in the context of an explicitly parallel program, which requires us to first infer the communication
pattern. However, the declarative specification of communication helps the compiler extract an
accurate high-level picture of the communication pattern and dependencies.

5 Conclusion and Future Work
In this paper, we have presented an algorithm to identify opportunities for coarse-grained software
pipelining in Kanor programs, and a code generation algorithm to automatically generate the
pipelined code. Unlike prior efforts in the context of languages with implicitly specified parallelism,
the algorithm to exploit software pipelining in Kanor is simpler and easier to assess for potential
effectiveness. We expect that this will enable the compiler to perform more aggressive optimizations
with Kanor than are possible with implicitly parallel languages. Future work includes studying a
larger class of applications and platforms, and extending the algorithm to sparse matrix algorithms.
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