Parallel Cosegmentation via Submodular
Optimization on Anisotropic Diffusion

Dinesh Majeti*, Aditya Prakash*, S. Balasubramanian, PK Baruah
Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam,India.
{dinesh.majeti,words.adi.worth} @ gmail.com, {sbalasubramanian,pkbaruah}@sssihl.edu.in

Abstract—With large number of related images being
used for applications such as MR spectroscopy imaging,
Object of interest 3D modelling and photo collages, the
need of the hour is to accelerate image cosegmentation
algorithms. Cosegmentation refers to the process of seg-
menting common regions from multiple related images.
A novel distributed algorithm, CoSand [1], for coseg-
mentation of large-scale image collections was proposed.
CoSand involves preprocessing, solving multiple systems of
linear equations and clustering for every image, thereby
making it computationally intensive. In this work various
approaches to parallelize the MATLAB code for this
problem were considered. The most time consuming part of
code which is solving multiple systems of linear equations
was offloaded to the GPU. Other operations have been
performed on multicores. Further, unlike other parallelized
image processing algorithms that require a single image
data transfer to GPU, CoSand requires a set of image data
(500 in our case) accounting for a substantial data transfer
overhead. Even in this scenario, the parallel implementa-
tion on GPU has achieved a significant performance gain
which is comparable to the multicore implementation of
the entire application.

Index Terms—Cosegmentation, submodular function,
anisotropic diffusion, lazy execution.

I. INTRODUCTION

General purpose GPU computing languages like
CUDA and OpenCL provide interface to tap the power
of the massive multi-threading of GPUs and gain perfor-
mance. Even without any experience with CUDA, pro-
grammers can benefit from GPUs by using accelerated
linear algebra libraries such as CULA [2] and MAGMA
[3]. Products like MATLAB’s Parallel Computing Tool-
box and AccelerEyes Jacket [4] provide performance
boost to MATLAB based applications. Depending on
the scope of parallelization of a given application these
softwares provide a gamut of tools for high performance
computing. Image cosegmentation is one such applica-
tion that lends itself to parallelization.

*Student Author

Cosegmentation of images is the identification of
similar objects in multiple images. Cosegmentation has
applications in interactive graphics, video segmentation,
measuring image similarity, medical imaging and build-
ing 3D models from photo collections. Co-Segmentation
via anisotropic diffusion (CoSand) [1], is a novel and
highly scalable cosegmentation algorithm. CoSand is
readily applicable to large scale image collection with
high variability. For details readers are referred to [1].

II. RELATED WORK

There are several recent articles that target the general
task of cosegmentation of multiple images [5]-[7]. Par-
ticularly, [5] and [7] cast the problem of cosegmentation
as Markov Random Field based segmentation of the
image pair with a regularized difference of the two
histograms. Vincente et al. [8] proposed the idea of
object cosegmentation based on a similarity measure
while Joulin et al. [9] combined tools like normalized
cuts with kernel methods commonly used in object
recognition for cosegmentation.

Despite the availability of lot of work on cosegmenta-
tion, literature on implementation of cosegmentation on
GPU is scarce. Collins et al. [10] recast the cosegmenta-
tion problem using Random Walker segmentation. They
also proposed GPU based optimizations by expressing
the operations leading to cosegmentation in terms of
linear algebra operations.

In this work parallelization of CoSand using MAT-
LAB PCT, AccelerEyes Jacket, and CULA is investi-
gated. Section III explains the serial CoSand, section
IV discusses the various approaches taken to parallelize
CoSand and section V presents the various results ob-
tained.

III. COSAND - THE ALGORITHM

The schematic diagram of CoSand is given in Figure
1. The input to the algorithm is an image set Z and
the number of segments K. The main objective of the

Fig. 1: CoSand algorithm

algorithm is to place the K segment centres in order to
maximize the segmentation confidence at each pixel in
an image while enforcing inter-image similarity between
the chosen segments across images in the image set.
CoSand consists of three stages:

I Preprocessing Stage:

(a) The intra-image graph G; = (V;,&;, D;), where
the vertex set V; is the set of extracted super-
pixels and the edge set &; is the set of all pairs
of adjacent superpixels, is constructed. Gaussian
similarity is used to compute the diffusivity D;
on the features of superpixels. The 3-D CIE Lab
color and 4-D texture features are extracted in
each superpixel.

Agglomerative clustering is run on G; to find
the evaluation points £;.

(b)

Il Source placement Stage:

(a) The gain at each of the evaluation points for
every image is obtained by solving a system of
linear equations that requires matrix inversion,
a computationally intensive operation.

(b) Subsequently, belief propagation is performed
to obtain the constant factor approximation to
the algorithm.

IIT Clustering Stage: This stage uses the source points
from the previous stage to obtain the cosegmentation
by clustering the superpixels that share the same
source point as the most probable destination in each
image.

Function Marme Calls Total Time Self Time* | Total Time Plot
h {dark band = self time)
script_cosegment 1 5399865 0473 s
ruN_Coseq_naive_gresdy 1 4145615 05075 |
gex_potential_ mult lineg inc iny 400 3743925 —
Preprocessing run_superpixal 100 836385 | 12919s (W
get_sp_turbo 100 67,6845 0.004 5 [|
superpixels 100 E7B5Es 0.347 ¢]
Source))
placement evolve _height _function N 300 Sh427 5 25625 [|
LC0sed _haive greedysrun _bo_max_sources | 4 396425 19007 0
Fig. 2: MATLAB profiler result
Clustering
As it is evident from the algorithm, stages I, II(a) and
Il can be done independently for every image. Only

the belief propagation stage (II(b)) requires data from
all the images. Thus all the stages other than II(b) lend
themselves to parallelization.

IV. APPROACHES TAKEN TO PARALLELIZE THE
APPLICATION

Using MATLAB profiler, it was observed that step
II(a) consumed 62% of the time of sequential CoSand as
seen in Figure 2 (get_potential_mult_lineq_inc_inv is the
procedure performing II(a)). This step involves solving
systems of linear equations at a set of evaluation points
for each image independent of other images. We discuss
various approaches to parallelization of II(a) below:

A. Thrust through nvmex

Thrust is a C++ template library for CUDA. It mimics
Standard template library. It provides programmers with
various containers and algorithms.

Step 1I(a) was ported on to GPU using a vector of
structures, one structure per image, containing the image
data including Laplacian matrix, set of evaluation points
and the corresponding weights using Thrust library.
However, Thrust compilation was significantly slow. For
example, it consumed 30 minutes for 10 images under
nvcc -O3 option. Even worse than this was the no
response scenario when O3 option was not used. This
could probably be because of a dominant proportion of
compilation being spent in cicc, a compiler component,
with 2GB of system memory being used'.

In addition to a long compilation time, Thrust, unlike
MATLAB, does not provide efficient data structures and
interfaces viz., vector of vectors to encapsulate image

!communication with ClLiff Woolley, NVIDIA, also asserts this
observation

data to perform operations like removal and updation
of specific rows of Laplacian matrix as required by
CoSand. Hence parallelization of CoSand is infeasible
using Thrust.

B. CULA

Solving a system of linear equations, matrix inversion
and multiplication can be ported to GPU using CULA
library. CULA functions can be called either explicitly
using MEX interface or implicitly from MATLAB. For
matrices of size about 1024x1024, the overhead of
using CULA from MATLAB undermines the perfor-
mance enhancement (see Table I). For larger matrices
(>2048x2048), performance gain is visible as shown
in Table I. But CoSand uses matrices of dimensions
1024x1024.

Matrix Size | MATLAB CULA JACKET
1024x1024 | 0.0809 0.0815 0.0371
2048x2048 | 0.489 0.277 0.109
4096x4096 | 3.013 1.25 0.436

TABLE I: Time taken for inverse operation in seconds

C. MATLAB’S PCT

MATLAB’s Parallel Computing Toolbox (PCT) en-
ables users to harness the power of a multicore computer,
GPU, cluster, grid or cloud to solve computational and
data intensive problems. It’s gpuArray functionality al-
lows for a certain set of supported MATLAB functions
to be ported on to the GPU.

Also the Parallel for-loops (parfor) helps to run loop
iterations in parallel. The overhead for starting and shut-
ting down the worker pool is about 10-15 seconds and 5
seconds [11] respectively. There are also communication
overheads between the MATLAB session and the local
worker processes. So, this approach is worth considering
only if the loop in the serial version takes more than
30 seconds. Thus using parfor to port independent
computations for each image on multicores would not
give good performance if number of images is small.
As CoSand involves a large number of images, parfor is
suitable for parallelization.

D. AccelerEyes Jacket

Jacket accelerates MATLAB code on GPUs. It pro-
vides support for a large number of MATLAB functions.
It performs automatic translation of MATLAB code to
high performance primitives suited for GPUs.

Jacket employs a compile on-the-fly approach referred
to as lazy execution. Under lazy execution Jacket does

-

Fig. 3: Cosegmentation result for MSRC Cow dataset -
row I: input images, row 2: serial color-coded cosegmen-
tation, row 3: segments from the image, row 4: parallel
color-coded segmentation, row 5: segments - parallel
result

not dispatch kernels for every Jacket call. Instead it
compiles and invokes kernel only when a result from
a Jacket call is required by a non-Jacket computation.
As can be seen in Table I Jacket outperforms MAT-
LAB and CULA in case of matrix inversion. Hence,
Jacket is an appropriate tool for CoSand parallelization.

V. RESULTS

Lion, Gorilla, Ferret and Butterfly synsets of Ima-
geNet dataset [12] and Cow images from the MSRC
dataset [13] were used in the experiment. The number
of superpixels was limited to 1000 and the images were
resized to a maximum of 300 x 300. The value of K i.e.,
the number of sources was fixed to 4. All the images are
color images.

Correctness of parallel CoSand was verified by visual
inspection as shown in Figure 4. The performance of
parallel and serial implementation was tested in follow-
ing environment:

(a) Intel(R) Xeon(R) CPU X5650 2.67GHz processor
with 12 cores and 24GB RAM.

Fig. 4: Cosegmentation result for Imagenet Butterfly
synset - row I: input images, row 2: segments from the
image, row 3: segments - parallel result

10 T T T T

B Stage |
[Stage Il(a)
B Stage 111

Speedup

Number of Threads

Fig. 5: Performance of Stages I, II(a) and III

(b) Tesla S2050 device with CUDA Driver and Runtime
versions 4.2.

The total time spent in each of the stages viz., I, II and
IIT were recorded. Figure 5 shows the speedup achieved
for each stage on multicores using MATLAB PCT. The
speedup increases with the number of threads upto 12
threads. Using MATLAB on SMP type systems such as
PSC Blacklight [14], exploiting more cores may further
increase the speedup. With respect to GPU, as envisaged,
the performance diminishes as the number of images
increase (see Fig. 6) because of increased data transfer
overhead. The experimental results also showed that
using GPU and multicore together for stage 1I(a) reduces
the performance as shown in Figure 7 (see second bar).
This clearly illustrates the fact that the code becomes
serialized when multiple threads try to run code on the
same GPU device. This problem can be resolved in a
multi-GPU node if, each of the multicore thread can be
bound to a unique GPU.

JACKET Performance

100 200 400 500

Number of Images

Fig. 6: Performance of Jacket with increase in number
of images

Speedup
54
T

Serial 12 threads + Jacket 12 threads Jacket

Approach

Fig. 7: Speedup using various approaches for stage Il(a)

450 T T
400 frocoeeeee

350 -~ (B Serial
[Parallel Computing Toolbox
300 e--- B JACKET

Execution time (sec)

Number of Images

8: Comparison of Serial, PCT and JACKET

Fig.

We also compare the result for stage II(a) using
MATLAB PCT gpuArray and AccelerEyes Jacket with
serial code for 500 images in Figure 8. This emphasizes
that Jacket outperforms MATLAB’s PCT. This can be
attributed to lazy execution method adopted in Jacket.

It is to be noted that CoSand uses two different
approaches for stage Il(a) namely, incremental inverse
and LU decomposition. In serial execution of CoSand,
incremental inverse is faster than LU decomposition. But
on multicores, the speedup for incremental inverse is
lesser than LU decomposition with increase in number of
threads (see Fig.9). This behaviour is observed because

-
=1

g A
: A~
: /
e 7
]
:% i / U decomposition
3 / p—— = Incremental Inverse
2 =
1 —
o
2

4 8 12

Number of threads

Fig. 9: Comparison between incremental inverse and LU
decomposition algorithms

the incremental inverse method, unlike LU decomposi-
tion involves matrix inversion and multiplication opera-
tions. These operations are implicitly multi-threaded in
MATLAB. But parallelization using multicores causes
individual threads to perform matrix inversions and mul-
tiplication. This leads to decline in performance.

The overall performance gain achieved using the dif-
ferent approaches of Jacket on GPU and MATLAB PCT
on multicores leveraging the incremental inverse method
are comparable and are about 4x. Employing multicores
for parallelization using MATLAB PCT shows a speedup
of about 9x for each stage namely, stage I, II(a) using
LU method and III.

VI. CONCLUSION AND FUTURE WORK

Various approaches to parallelize MATLAB code for
Distributed Cosegmentation via Submodular Optimiza-
tion on Anisotropic Diffusion were considered. The
approaches include use of Thrust, Acceleryes Jacket,
MATLAB’s PCT and GPU accelerated linear algebra
library CULA. While Thrust is infeasible for perfor-
mance gain in CoSand, CULA does not give significant
speedup.

MATLAB PCT for multicore and AccelerEyes Jacket
for GPU are possible solutions to parallelism. Jacket
outperforms PCT on GPU. The overall performance gain
achieved using the different approaches of Jacket on
GPU and MATLAB PCT on multicores leveraging the
incremental inverse method are comparable. Employ-
ing multicores for parallelization using MATLAB PCT
shows a speedup of about 9x for each stage namely, stage
I, II(a) using LU method and III.

For future work we propose a complete implemen-
tation of the given cosegmentation algorithm in CUDA
using the OpenCV library. Also the change in perfor-
mance with varying number of sources and superpixels

can be examined.

ACKNOWLEDGMENT

This work is dedicated to our Divine Founder Chan-
cellor Bhagawan Sri Sathya Sai Baba who is the source
of our inspiration and motivation.

We would like to thank Gunhee Kim for gen-
erously making a MATLAB implementation of Dis-
tributed Cosegmentation via Submodular Optimization
on Anisotropic Diffusion available online. 2

This work was partially supported by a NVIDIA grant
under Professor Partnership program, a Defence Re-
search and Development Organization (DRDO) grant un-
der Extramural Research and Intellectual Property rights
and the Extreme Science and Engineering Discovery
Environment (XSEDE) of National Science Foundation
under grant number OCI-1053575.

REFERENCES

[1] Gunhee Kim, Eric P. Xing, Li Fei-Fei, and Takeo Kanade.
Distributed cosegmentation via submodular optimization on
anisotropic diffusion. In 13th International Conference on
Computer Vision (ICCV 2011), 2011.

[2] CULA Reference Manual.

[3] developer.nvidia.com/cuda/magma.

[4] www.accelereyes.com.

[S] Mukherjee et. al. Half-integrality based algorithms for coseg-
mentation of images. In CVPR’09, pages 2028-2035, 2009.

[6] Vicente et. al. Cosegmentation revisited: models and opti-
mization. In Proceedings of the 11th European conference on
Computer vision: Part II, ECCV’10, pages 465—479, Berlin,
Heidelberg, 2010. Springer-Verlag.

[7]1 Rother et. al. Cosegmentation of image pairs by histogram
matching. In Proceedings of the 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition -
Volume 1, CVPR ’06, pages 993-1000, Washington, DC, USA,
2006. IEEE Computer Society.

[8] Vicente et. al. Object cosegmentation. In Proceedings of
the 2011 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’11, pages 2217-2224, Washington, DC,
USA, 2011. IEEE Computer Society.

[9] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for

image co-segmentation. In Proceedings of the Conference on

Computer Vision and Pattern Recognition (CVPR), 2010.

Collins et. al. Random walks based multi-image segmentation:

Quasiconvexity results and gpu-based solutions. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Providence, Rhode Island, June 2012.

Parallel Computing Toolbox User’s Guide R2012b.

Deng et. al. Imagenet: A large-scale hierarchical image

database. In CVPR’09, pages 248-255, 2009.

J. Winn, A. Criminisi, and T. Minka. Object categorization by

learned universal visual dictionary. In Proceedings of the Tenth

IEEE International Conference on Computer Vision - Volume

2, ICCV 05, pages 1800-1807, Washington, DC, USA, 2005.

IEEE Computer Society.

[14] www.psc.edu/index.php/computing-resources/blacklight.

(10]

(11]
(12]

(13]

2http://www.cs.cmu.edu/~gunhee/r_seg_submod.htm]

