D-face: Parallel Implementation of CNN Based Face Classifier using Drone Data On
K40 & Jetson TK1

Harish, Ayyappa, Santosh and P K Baruah

Department of Mathematics and Computer Science
Sri Sathya Sai Institute of Higher Learning(SSSIHL)

PrashantiNilayam, India

harishatchutanna @ gmail.com and pkbaruah@sssihl.edu.in

Abstract—Deep Convolutional Neural

Networks(CNNs) are shown to perform very well in the
areas such as video surveillance, object classification
and face classification. Face classification has become
pertinent to numerous applications, especially in this big
data era of social platforms and social media. With the
usage of unmanned air-borne vehicles like drones, the
problem of face classification becomes very challenging
because of the large visual variations.
In this paper we introduce D-face, a novel application
for face classification, and the input to the classification
model is taken from the drone video sequences. In recent
times, the CNNs have gained a significant importance
in the class of classification problems, but the cons
being its computational intensity. High performance
computing using Graphical Processing Units(GPUs)
has become an important tool in solving the compute
intensive problems. We have used GPUs to speedup the
classification rate for our problem. We bring about a
faster parallel implementation that achieves almost 13x
on GPUs compared to its serial implementation.

Keywords-Face classification, Convolutional neural

networks, GPU

I. INTRODUCTION

With the increasing popularity of Graphical
Processing Units(GPU’s) in the recent past, they have
been largely exploited for carrying out heavy parallel
computations which resulted in massive speed up of
execution time. GPUs are widely used in domains
such as bio-informatics, data science, computer vision,
and machine learning. Face classification is one such
area in computer vision domain which has a wide
range of applications such as human and computer
interaction, surveillance systems, gender classification,
facial feature extraction etc.

Kaliuday Balleda and Sairam K M Menon
MulticoreWare Inc
California (HQ), 530 Lakeside Drive, Suite #140
Sunnyvale, CA 94085
kaliuday, sairam@multicorewareinc.com

In general, face detectors work very well for the
near frontal faces [1], but the problem arises when
there is unconstrained face detection, i.e., factors such
as pose changes and different light conditions can
lead to visual disparity which in turn hinders the
performance of the face classifier. So CNN based
solution to this problem seems to be the most effective
one [2]. The main focus of this paper is parallelization
of a face classification algorithm from drone video
sequences using deep convolution neural networks.
Face classification is the fundamental step in complex
problems like face recognition process. Generally,
faces are classified either from still frames or from a
video depending upon the application.

The methods for face classification include - pixel
based, edge based, parts based, haar wavelets and
haar like features. Haar features have added a great
importance to facial classification since faces can be
classified even with occlusion [3]. Face classification
can be doneine learning algorithms like Support Vector
Machines, Bayesian Classifier, Artificial Neural Net-
works, Fisher linear discriminant, sparse network of
Winnows, decision trees etc. have been used for this
purpose [4].

Inpuc layer (51) 4 feature maps

(C1) 4 feaure maps (S2) 6 feacure maps (C2) 6 feature maps

BE %

sub-sampling layer |

L convolution layer | convolution layer | sub-sampling layer | fully connecs: ed MLP |

Figure 1. CNN Architecture [5]

CNNss consists of mainly three layers apart from the
non-linearity and the loss layers, they are:

Convolution layer: Given an image as input, the
main job of convolution layer is to perform the dot
product between the weights and the locally connected
regions, to compute the output for each neuron.

Pooling layer : Down sampling operation of the
image along the spatial dimensions of the image (i.e.,
width, height) is done by Pooling Layer.

Fully connected layer (FC): FC layer will compute
the class scores. As is the case with Artificial Neural
Networks and as the name implies, each neuron in the
FC layer is connected to all the previous layer units.

II. LITERATURE SURVEY

Jieping Ye et. al.[6] proposed a novel LDA
algorithm called as 2D LDA. In novel LDA algorithm
the features say, nose, eyes, mouth are easily extracted,
but the challenge was the class scatter and singularity.
The 2D LDA algorithm overcomes the singularity
problem, and the main difference between the LDA
and 2D LDA is in the data representation. The hybrid
approach of using LDA+2D-LDA achieved more
classification and recognition accuracy.

In Imagenet classification [7], the convolutional
deep neural network is trained using 1.2 million high
resolution images for the classification. The training
of the neural network is made faster by an efficient
GPU implementation and non-saturating neurons.

AkinobuShimizu et.al [8], proposed a classification
approach for finding the frontal and nearly frontal faces
in strewed or cluttered images. The decomposition
of the gradient direction gives a sophisticated
discriminative ability than the image intensity and the
gradient map. Furthermore, the detection performance
was improved by combining the intensity and gradient
direction.

Noel O Connor , Saman cooray [9], discussed in
detail about detecting frontal faces; the technique
they used was combining the feature extraction and
statistical facial classification. The use of eye facial
feature points was very helpful in normalizing the
search space, which helped in reduction of image
pixel location analysis. In turn this lead to a new

approach for face classification.

The literature shows that the existing algorithms
concentrate mainly on the frontal face classification
and detection. The proposed algorithm and its
parallel implementation performs very well with the
frontal faces and also with visual variations such as,
occlusions and partial faces. The remainder of the
paper is organized as follows:

In Section 3, a detailed explanation of the proposed
method i.e; how CNN’s are used for face classification
is given, d Section 4 talks about the serial and parallel
implementations and the parallel strategies used. In
Section 5 we present experimental results of the pro-
posed optimized face classification approach. Finally
we conclude with the future work.

III. PROPOSED METHOD FOR FACE DETECTION

We use CNN for face classification and customized
the design accordingly for our problem.

A. Outline of the algorithm

step-1 [Intially, the neural network is trained using
the back propagation algorithm.
step-2 Once the CNN has been trained, the input
images to be classified are read one after the other.
step-3 We then use forward propagation method
which consists of applying a series of convolution,
max pooling and fully connected layers.
step-4 Finally, we have the classification probabilities
for each of the given image.

IV. IMPLEMENTATION
A. Serial implementation

1) Initially, from the trained CNN, we populate
array of structures corresponding to the number of
convolution layers and maxpooling layers.

2) For each of the image to be classified we invoke
the predict frame function for classification.

3) Each of the layer in CNN (i.e convolutionLayer,
maxPoolinglLayer etc.) is implemented as a separate
function in our case. The PredictFrame function
invokes the respective layers as when required.

The intermediary information between the layers
is passed using structures(For eg: The output of
convolutionlayerl is passed as an input to the
maxpoolinglayerl in form of CONVOUTTI structure).
Finally, we have convert function which converts the
output of Fullyconnected layer to a float value.

After profiling the code with gprof profiler it was
found that convolutionlayer function is the most time
consuming step(93%, refer Fig2). Thus, it was decided
to parallelize the convolution layer for improving the
performance of the classifier.

Time (msec)

4.45 2.22

= ConvolutionLayer = MaxPoolingLayer = FullyConnected4layer

Figure 2. Profiling Results

B. Parallel Implementation

Firstly, we copied all the CVLayers data, Maxpool-
Layers data and FullyConnectedLayers data, biases,
weights are copied from CPU host memory to GPU
global memory. Convolution layer function is launched
as a 2D kernel representing the two dimensions of the
input image. The weights and biases are copied into
the local memory. Loop unrolling has been done for
the loop iterating over the kernels.

C. GPU Optimizations :

2D Kernel: Since we have three convolution layers
in our design, we launched the first convolution layer
with (6,6)blocks with each block containing (16,16)
threads. For the second convolution layer we launched
(4,4) grid of blocks with each block containing (6,6)
threads and finally for the third convolution layer we
launched 1D grid with (12,12) threads.
Local Memory: In order to reduce the global memory
accesses, we copied all the weights and biases from
the global memory to the local memory. The array of
biases are of sizes 16, 16, 16 and those of weights are
2352, 6400 and 2304.
Loop Unrolling: Since among the 6 nested loops

present in our implementation we could parallelize
only the outermost loops in our algorithm, we did
loop unrolling for the inner most loop which iterates
over the number of channels, which are 16 in total.

V. EXPERIMENTAL SET-UP

A. Hardware

e CPU : Intel Core 15-4670k
e Discreet GPU : Nvidia Tesla K40
o Embedded Platform : Jetson TK1

— Tegra K1 SOC
— Kepler GPU with 192 cores
— 4-Plus-1 quad-core ARM Cortex-Al15 CPU.

« 6 CH Remote Control Quadcopter (Figure-3)

Figure 3. 6CH Remote Control Quadcopter (2.4 GHz Frequency)

B. Input

« Input proposals are collected from a drone video.
The drone used for this task is a 6 CH remote
control quad copter shown in Fig.3.

o Around 20hrs of drone video data is collected with
varying height which is ranging from 6ft to 10ft.
Input video consists both face and non face data.

VI. RESULTS AND ANALYSIS

The serial implementation of the algorithm imple-
mented in C was taking around 64 msec. A series of
optimizations were introduced in a progressive manner
and at the end, the computational time was drastically
brought down.

A. Discreet GPU

1) Serial Vs Parallel

Figure - 4, presents the timing comparison be-
tween CPU implementation and GPU implementation.
Overall CPU implementation takes 64milliseconds per
proposal for the classification. Whereas naive and opti-
mized versions takes 54milliseconds and Smilliseconds
respectively.

D Face : Intel i5 vs K40

w =3 ~
=) 5} =3

IS
3

o
5]

Time Taken in Milliseconds
i w
o =]

Winteli5 MWNaive K40 M Optimized K40

S}

Figure 4. Timing Comparison between Serial and Parallel

2) Speedup factor

D-face Speedup - Intel i5 Vs K40

M Intel i5 Vs Naive K40

W Naive K40 Vs Optimized
K40

X-Factor

Intel i5 Vs Optimized K40

Speedup Factor

Figure 5. Speedup Factor - K40

Figure - 5, presents the speedup factor. Overall
Optimized K40 implementation achieves around 13x
speedup in comparison with CPU implementation.

3) Optimizations

Figure - 6, presents the reduction of overall timings
after application of various CUDA optimizations.

K40 - CUDA Optimizations

60

Naive GPU, 54

50

40

30

20

Time Taken in MilliSeconds

2D-Grid, 9

10
Loop-Unroll, 5

CUDA-Optimizations

Figure 6. K40 - CUDA Optimizations

B. Jetson TKI
1) Serial Vs Parallel

Figure - 7, presents timings comparison between
ARM CPU implementation and Tegra K1 GPU imple-
mentation. There is a significant improvement between
CPU and Tegra K1 GPU.

D-face: ARM Cortex A15 Vs Tegra K1

140

120

100

80 7 mCPU

[]
60 - Naive GPU
m Optimized GPU

40 -

Time Taken In MilliSeconds

20

D-face Execution on Hardware

Figure 7. Timing Comparison

2) Speedup factor

Figure - 8, presents the speedup achieved using
Tegra K1 GPU. Around 3.2x speedup is achieved
overall in comparison with ARM CPU implementation.

3) Optimizations

Figure - 9, presents the impact of various CUDA-
Optimizations on top of Naive GPU implementation.
VII. CONCLUSIONS AND FUTURE WORK

In this work, we present a GPU based implemen-
tation for face detection using convolution neural net-

D-face Speedup - ARM A15 Vs Jetson

3.5

3 I

25 ————— —

B ARM Vs Naive Tegra

2

m NaiveTegra Vs
Optimized Tegra

X- Factor

ARM Vs Tegra

Speedup Factor

Figure 8. Speedup Factor - Jetson TKI1

Jetson - CUDA Optimizations

100

90

80
70 +

60

H NaiveGPU
50

W 2D-Grid
40 - WLDS

30 W Loop-Unroll

Time Taken in MilliSeconds

20 +
10 ~

CUDA-Optimizations

Figure 9. CUDA Optimizations

works(CNNs). We used Caffe and Torch framework
for the CNN design and training. The time taken by
the serial implementation is 64 msec, then we profiled
the code and found that the convolution layer function
was taking the maximun amount of execution time.
A complete outlook of various optimizations used for
high performance implementation were explained and
most of the optimizations done in this work are based
on the convolution layer function. We got a perfor-
mance of almost 13x over the serial implementation
using Tesla K40 GPU computing module.

In future, we can use vector data types, dynamic
parallelism optimizations and various other video pro-
cessing techniques to further improve the performance,
and try to extend this work for real time applications
such as drone face detection, video surveillance and
various other security related applications.

ACKNOWLEDGMENT

We would like to dedicate this work to the founder
Chancellor of SSSIHL, Bhagawan Sri Sathya Sai Baba.
We also would like to express our deep sense of
gratitude to MulticoreWare, Inc for giving us all the

technical support to make this project a reality and for
supporting to take it further. This work was partially
supported by a Nvidia grant under Professor partner-
ship program.

REFERENCES

[1] Viola, Paul, and Michael J. Jones. "Robust real-time face
detection.” International journal of computer vision 57.2
(2004): 137-154.

[2] Vidit Jain and Erik Learned-Miller. FDDB: A Bench-
mark for Face Detection in Unconstrained Settings

[3] Yang, Ming-Hsuan, David J. Kriegman, and Narendra
Ahuja. “Detecting faces in images: A survey.” Pattern
Analysis and Machine Intelligence, IEEE Transactions
on 24.1 (2002): 34-58.

[4] Jayech, Khlifia, and Mohamed Ali Mahjoub. ’Clustering
and Bayesian network for image of faces classification.”
arXiv preprint arXiv:1204.1679 (2012).

[5] http://deeplearning/tutorial/lenet.html

[6] Ye, Jieping, Ravi Janardan, and Qi Li. “Two-
dimensional linear discriminant analysis.” Advances in
neural information processing systems. 2004.

[7]1 Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hin-
ton. “Imagenet classification with deep convolutional
neural networks.” Advances in neural information pro-
cessing systems. 2012.

[8] Lin-Lin Huanga; AkinobuShimizu a, Yoshihoro Hagi-
harab, Hidefumi Kobatakea Gradient feature extraction
for classification-based face Detection Pattern Recogni-
tion 36 (2003) 2501 2511 Pattern Recognition Society.
Published by Elsevier Ltd.

[9] Saman cooray, Noel O Connor Facial features and
appearance-based classification for face detection in
color images.

