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Accelerated Progress in Transistor Integration 

•  Large multicores for data centers  
    and cloud 

Intel Xeon Phi 7290F (Oct 2016) 
72 cores, 288 contexts, 260W 

Intel 3D Xpoint memory 

•  3D stacked chips 

Micron’s Hybrid Memory Cube 
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Research is Pushing Ever Farther Ahead 
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•  Research on stacking multiple 
processor and memory dies 

Runnemede prototype [HPCA-13] 

•  More integration à 1,000 cores/chip 
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Meanwhile: Energy Wall… and Performance Wall 

Performance: 11 PF 
Power: 6-11 MW (idle to loaded)  
1MW  = $1M per year electricity 
 

•  University of Illinois Blue Waters Supercomputer 

and Performance Wall 

•  Technology improvements in speed and power slowing down 
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•  Very high energy efficiency 

•  Faster communication and synchronization 

•  Ease of programming 

What We Need 
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•  Ideal Scaling (or Dennard Scaling): Every semicond. generation: 
–  Dimension:  0.7 
–  Area of transistor:  0.7x0.7 = 0.49 
–  Supply Voltage Vdd, C:  0.7 
–  Frequency:  1/0.7 = 1.4 

Energy Wall: How Did We Get Here? 

 Constant dynamic power density  
•  Real Scaling: Vdd does not decrease much 

–  If too close to threshold voltage (Vth) à slow transistor 
–  Dynamic power density increases with smaller tech 
–  Additionally: There is the static power 

 Power density increases rapidly 
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Energy Efficiency: Low Voltage Operation 

•  Vdd  reduction is the best lever for energy efficiency 
 

 

•  Advantages: 
•  Reduces energy per operation quickly 

•  Drawbacks: 
•  Lower speed  
•  Higher variation in gate delay and power consumption 

 
 

Dynamic power: 
 

 
Static power: 
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•  Voltage-scalable cores 
•  Dynamic voltage speculation 
•  Pervasive power gating 
•  Control-theoretic controllers 
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Attaining Very High Energy Efficiency 

Reduce voltage 

Turn-off if unused 
Minimize waste 

Three rules: 
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•  Voltage-scalable cores 
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Attaining Very High Energy Efficiency 

Reduce voltage 
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Goal: A Voltage-Scalable Core 
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Go to low voltage (~0.6V) 
and attain high energy 
efficiency  “EEMode” 

Deliver high performance 
at nominal voltage (~0.9V) 
“HPMode” 

Goal: Operate at very low Vdd when we have parallelism  
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Some Observations 
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•  SRAM and logic scale differently with Vdd 

•  Small increase in Vdd à large reduction in delay 
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ScalCore Idea (I) 
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•  Decouple the Vdd of logic and storage structures in the pipeline 

–  Can reduce the Vdd of logic more à higher energy efficiency 
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[Gopireddy HPCA’16] 
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ScalCore Idea (II) 
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•  Raise Vdd of storage structures a little: faster at low E cost 
–  Reconfigure the pipeline to leverage the faster storage 

structures and improve IPC 

V
op

 

fop  ~ 1200 

V
m

in
 

fmin  ~ 900 

V
lo

gi
c 

flogic  ~ 600 

V
m

in
 

fmin  ~ 900 

[Gopireddy HPCA’16] 
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How Does it Work? 
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•  At nominal, high-performance conditions (HPMode):  
–  Conventional processor 

•  When energy efficiency matters (EEMode): 
–  Decouple Vdd for storage and logic stages in the pipeline 

•  Storage stages ~2x faster than logic stages 
–  Reconfigure pipeline in one of the two ways: 

•  Fuse storage stages in the pipeline (e.g., access register file) 
•  Increase storage structure sizes (e.g., load-store queue) 



Josep Torrellas 
Toward Extreme Scale… 

ScalCore: a Core for Voltage Scalability 
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Fusing Two Pipeline Stages into One 
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Fusing Two Pipeline Stages into One 
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ScalCore Summary  
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•  Highly energy-efficient when needed (parallel sections): 
•  Vdd of logic stages very low 
•  Reconfigured to fuse stages to increase IPC 

•  High performance at nominal conditions (serial sections): 
•  Unmodified pipeline 
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•  Voltage-scalable cores 
•  Dynamic voltage speculation 
•  Pervasive power gating 
•  Control-theoretic controllers 

Attaining Very High Energy Efficiency 
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Risky Ways to Reduce Vdd 
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Reducing the Voltage of Cores 
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Margin  
Reduction  
Opportunity 
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2

How Much Can We Reduce the Vdd? 

Observation: Correctable errors always triggered before 
uncorrectable ones, while running a stress test workload.   
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Reducing the Voltage of On-Chip Network 

•  Networks typically have error detection capabilities 
•  Networks connect slow and fast parts of the chip (due to process 

variation) 
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•  Propose: 
–  Dynamically reduce Vdd of different parts of the network  
–  Detect and handle errors 
  

[Ansari  HPCA’14] 
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Error Rate as Function of Vdd 

•   Process variation has a major impact on the routers 

•  On-chip network with many routers 
•  Error rate per router as we change Vdd 
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Leveraging the Error Handing of Networks 

•  Reduce Vdd of clusters of routers based on their tolerance 
–  Continuously monitor for errors (and handle them) 
–  Dynamically adapt Vdd of each cluster of routers based on errors  

•  Highly energy efficient 
–  Remove Vdd margins added for variation 

25 
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Scheme Operation (Initial) 
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Scheme Operation (Lowering Voltage ) 
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Scheme Operation (Vdd Tuning on a Path ) 
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Scheme Operation (Convergence) 
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Scheme Operation (Convergence) 
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•   Energy savings of 20-30% 
of network while keeping the 
system reliable 

•   Only 1-1.5% performance 
impact 
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•  Voltage-scalable cores 
•  Dynamic voltage speculation 
•  Pervasive power gating 
•  Control-theoretic controllers 

Attaining Very High Energy Efficiency 
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Power-Gating: A Real Requirement 

•  Components not in use need to be power-gated 
–  OS/software can do it sometimes, but has overhead 

–  Many short idle periods; need HW-based power gating 

•  Example: Last-level cache miss 

•  When we power-gate a structure, we lose its state  

•  Propose micro-checkpoint the pipeline: fast restoration of state 

32 
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Use Non-Volatile Memory for Micro-Checkpointing 

•  Challenge: NVM write latency 
–  Need to bring NVM access latency to < 10 cycles away 

33 

Memory 
State 

Compute 
State 

Memory 

Monolithic integration 

Cores+L1 L2 NVM 

Same die integration 
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•  Write-latency sensitive units: 
–  Reg file, Inst window, ROB, Ld/st queue, 

pipeline regs 

–  Implemented in SRAM + shadow in STTRAM 
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Shadow Latency-Sensitive Structures [Pan ICCD’14] 

•  Hybrid SRAM/STTRAM 
–  SRAM for primary storage 

–  STTRAM shadow of identical size  
–  Data moved to shadow lazily 
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–  Checkpointing and wakeup of cores managed by L1 cache controller 

–  Checkpoint/wakeup sequence: 

19 

Hardware Implementation 

1.  Ld issued, missed in L2 
2.  Sleep signal sent to core 

3.  Push data into shadow + power gate  

4.  Missing data returns 
5.  Wakeup signal sent to core 

6.  Reload data from shadow + wakeup  
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•  Voltage-scalable cores 
•  Dynamic voltage speculation 
•  Pervasive power gating 
•  Control-theoretic controllers 

Attaining Very High Energy Efficiency 
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The Need for Optimal Control 

•  Extreme scale manycores need effective controllers 
–  Power, energy, temperature, utilization… 

•  Current approaches for architectural control and tuning 
–  Heuristics  
–  Machine learning 
–  Control theory 

37 
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Heuristics 

•  Lightweight 
•  Popular with architects 

•  No guarantees 
•  No formal methodology 
•  Hard to add learning 
•  Prone to errors 
•  Hard to deal with multiple inputs and/or outputs 
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Controlling a System with Control Theory 
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Internal state 
𝑥 

Inputs 
𝑢 

Outputs 
𝑦 

Sensor 
noise 

Non determinism 

•  The model is {A, B, C, D} + Unpredictability matrices   
–  Obtained from analytical formulas or experimental 

characterization 

𝑥(𝑇+1)=𝐴𝑥(𝑇)+𝐵𝑢(𝑇)  


𝑦(𝑇)=𝐶𝑥(𝑇)+𝐷𝑢(𝑇) 

•  Want MIMO control (Multiple Inputs and Multiple Outputs) 

[Pothukuchi ISCA’16] 
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MIMO Control 

•  Actuate on multiple inputs: cache size, frequency, #ROB entries 
•  Control multiple outputs: performance (BIPS), power 

BIPS Ref  

System Controller BIPS 

Power 
Outputs (y) 

Inputs (u) 

Power Ref  

Cache size 
Freq 

ROB entries 
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Control Theory 

•  Feedback loop: runtime adaptation to conditions not seen 
during training 

•  Guarantees:  Convergence, Stability, Optimality  
•  Easy to add/remove a new input 

•  Hard to obtain model 
•  Specifying the target values of outputs is not obvious (Power, 

performance) 
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MIMO Controller Details 

•  Each input and each output has a cost (or weight) 
–  Cost of an input: How hard it is to change it from its current value 
–  Cost of an output: Cost of not meeting the target of the output 

•  System will try to minimize the changes to costly inputs/outputs 
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MIMO Controller Details 

•  Relative cost of inputs & outputs controls the inertia of the system 

Input weights << output weights: 
Ripply system 

Input weights >> output weights: 
System with inertia 
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Uses of the Controller (I) 

•  Set outputs to target values: 
–  Performance (BIPS0) and Power (P0) 

IPS Ref  

System Controller BIPS 

Power 
Outputs (y) 

Inputs (u) 

Power Ref  

Cache size 
Freq 

ROB entries 
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Uses of the Controller (II) 

•  Set outputs to varying target values: 
–  Changing the quality of service (QoS) as the battery is 

depleted in a mobile device  
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Uses of the Controller (III) 

•  Optimize a combination of output measures: 
–  Minimize (ExD)= maximize (IPS2/Power) 

Propose: Optimizer that searches directly in the space of (IPS2,P) 
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•  Voltage-scalable cores 
•  Dynamic voltage speculation 
•  Pervasive power gating 
•  Control-theoretic controllers 

Attaining Very High Energy Efficiency 
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More Energy Efficiency? Need New Technologies 

•  Picture is unclear 
•  If we want energy efficiency, we will get lower performance and 

need to rely on more parallelism (many more cores) 
•  Likely a combination of technologies in the same die/stack 
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TFET Characteristics 
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–  Can be fabricated on the same die as CMOS 
–  Consumes much less power (4—8x less) 
–  Scalable 

 
–  Not as fast as CMOS  (2—4x slower) 
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What Will Happen? 

•  Heterogeneous architectures? 

50 
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Conclusion 

•  Energy and power efficiency are the strongest constraints in future 
computer architectures 

•  There is no silver bullet (or perhaps it is Vdd reduction) 

•  Some principles: 
–  Reduce voltage (safely or taking risks) 
–  Turn-off if unused 
–  Minimize waste 
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Currently: Big/Little 
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Little Big 
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Big/Little Not Optimal 

     Fixed partitioning of cores  
•  A fraction of chip unused 
•  Migration overhead  

54 

ARM System 


