Toward Extreme-Scale
Processor Chips

Josep Torrellas

Department of Computer Science
University of lllinois at Urbana-Champaign
http://lacoma.cs.uiuc.edu

HiPC 2016
Hyderabad, India

[:9\99523 HiLiNois



Accelerated Progress in Transistor Integration

« Large multicores for data centers  « 3D stacked chips
and cloud
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Research is Pushing Ever Farther Ahead

* More integration = 1,000 cores/chip
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Meanwhile: Energy Wall.. and Performance Wall

« University of lllinois Blue Waters Supercomputer

Performance: 11 PF
Power: 6-11 MW (idle to loaded)
1MW = $1M per year electricity

« Technology improvements in speed and power slowing down
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What We Need

* Very high energy efficiency
* Faster communication and synchronization

« Ease of programming
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Energy Wall: How Did We Get Here?

 ldeal Scaling (or Dennard Scaling): Every semicond. generation:
— Dimension: 0.7
— Area of transistor: 0.7x0.7 = 0.49
— Supply Voltage V,, C: 0.7 Payn o CVZadf
— Frequency: 1/0.7 = 1.4 A A
Constant dynamic power density

» Real Scaling: V44 does not decrease much
— If too close to threshold voltage (V,) = slow transistor
— Dynamic power density increases with smaller tech
— Additionally: There is the static power

Power density increases rapidly
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Energy Efficiency: Low Voltage Operation

« V44 reduction is the best lever for energy efficiency
Dynamic power: Payn o< CVgyf
Static power:  Psta X VaggT?e™ 1Vt/T

* Advantages:
« Reduces energy per operation quickly
« Drawbacks:
 Lower speed
» Higher variation in gate delay and power consumption
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Attaining Very High Energy Efficiency

Three rules:
« \oltage-scalable cores
» Dynamic voltage speculation Reduce voltage
* Pervasive power gating Turn-off if unused
« Control-theoretic controllers Minimize waste
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Goal: A Voltage-Scalable Core

TARRRRAAAL T

Go to low voltage (~0.6V) Deliver high performance
and attain high energy at nominal voltage (~0.9V)
efficiency “EEMode” “‘HPMode”

Goal: Operate at very low V 4, when we have parallelism
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Some Observations

« SRAM and logic scale differently with V4
- Small increase in V4 = large reduction in delay

10000 -
] =#=SRAM-Freq =#=Logic-Freq
£ ~3500
N
=
e
& 1000 -
: ] === == == == = e e = e == ===
9 |
o | I
5 |
&3 |
B I I
| I
=}
] §| EL
> >
I
100 I

09 08 08 075 07 065 06 055 05 045
Vaa (V)

' Josep Torrellas
I-acoma Toward Extreme Scale... ILLINOIS k

e group



ScalCore Idea (I)

[Gopireddy HPCA'16]

« Decouple the Vdd of logic and storage structures in the pipeline
— Can reduce the Vdd of logic more = higher energy efficiency

10000 -

=#=SRAM-Freq =#=Logic-Freq

1000 -

Frequency (MHz)

100 ——— T
09 08 08 075 07 065 06 055 05 045
Vaa (V)
Josep Torrellas
I-acoma Toward Extreme Scale... ILLINOIS 2

e group



ScalCore Idea (ll)

[Gopireddy HPCA'16]

« Raise Vdd of storage structures a little: faster at low E cost

— Reconfigure the pipeline to leverage the faster storage
structures and improve IPC
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How Does it Work?

« At nominal, high-performance conditions (HPMode):
— Conventional processor
* When energy efficiency matters (EEMode):
— Decouple V , for storage and logic stages in the pipeline
» Storage stages ~2x faster than logic stages

— Reconfigure pipeline in one of the two ways:
» Fuse storage stages in the pipeline (e.g., access register file)
* Increase storage structure sizes (e.g., load-store queue)
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ScalCore: a Core for Voltage Scalability
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Fusing Two Pipeline Stages into One

Storage Storage
Stage 2a Stage 2b
HPMode
CLK
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Fusing Two Pipeline Stages into One

Storage
Stage 2b

Storage
Stage 2a

HPMode

Enable

CLK Flow-through |

EEMode

Enable 1

CLK Flow-through
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ScalCore Summary

« Highly energy-efficient when needed (parallel sections):
« Vdd of logic stages very low
« Reconfigured to fuse stages to increase |IPC

« High performance at nominal conditions (serial sections):
« Unmodified pipeline
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Attaining Very High Energy Efficiency

Voltage-scalable cores
Dynamic voltage speculation
Pervasive power gating
Control-theoretic controllers
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Risky Ways to Reduce V

Voltage
Guardband

Process
Variation
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Reducing the Voltage of Cores
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How Much Can We Reduce the VVdd?

[Bacha ISCA'13]
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Observation: Correctable errors always triggered before
uncorrectable ones, while running a stress test workload.
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Reducing the Voltage of On-Chip Network

[Ansari HPCA'14]

* Networks typically have error detection capabilities

» Networks connect slow and fast parts of the chip (due to process
variation)

* Propose:
— Dynamically reduce Vdd of different parts of the network
— Detect and handle errors
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Error Rate as Function of Vdd

« On-chip network with many routers
« Error rate per router as we change Vdd
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* Process variation has a major impact on the routers
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Leveraging the Error Handing of Networks

* Reduce Vdd of clusters of routers based on their tolerance

— Continuously monitor for errors (and handle them)

— Dynamically adapt Vdd of each cluster of routers based on errors
« Highly energy efficient

— Remove Vdd margins added for variation
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Scheme Operation (Initial)

0.8V 0.8V 0.8V 0.8V

0.8V 0.8V 0.8V 0.8V
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Scheme Operation (Lowering Voltage )

0.6V

0.6V

0.6V

0.6V
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Scheme Operation (Vdd Tuning on a Path )

0.65V 0.65V 0.65V 0.65V
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e Josep Torrellas
I-acoma Toward Extreme Scale... m ILLINOIS®

~~~_ group



Scheme Operation (Convergence)

0.55V 0.62V 0.58V 0.65V

0.55V 0.58V 0.62V 0.65V
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Scheme Operation (Convergence)

0.55V 0.62V

* Energy savings of 20-30%
of network while keeping the
system reliable

Only 1-1.5% performance
impact

0.62Vv

0.55V 0.58V 0.62V 0.65V
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Attaining Very High Energy Efficiency

Voltage-scalable cores
Dynamic voltage speculation
* Pervasive power gating
Control-theoretic controllers
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Power-Gating: A Real Requirement

« Components not in use need to be power-gated
— OS/software can do it sometimes, but has overhead
— Many short idle periods; need HW-based power gating
« Example: Last-level cache miss
 When we power-gate a structure, we lose its state

* Propose micro-checkpoint the pipeline: fast restoration of state
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Use Non-Volatile Memory for Micro-Checkpointing

« Challenge: NVM write latency

— Need to bring NVM access latency to < 10 cycles away

Memory
State

Compute
State
Memory

Monolithic integration
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Shadow Latency-Sensitive Structures Pan ICCD14

« Write-latency sensitive units:

— Reg file, Inst window, ROB, Ld/st queue,
pipeline regs SRAM Master  STT-RAM Shadow

— Implemented in SRAM + shadow in STTRAM

< »
< >

A
\

« Hybrid SRAM/STTRAM
— SRAM for primary storage
— STTRAM shadow of identical size
— Data moved to shadow lazily |

checkpoint
control

A
\/
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bank3 bank2 bank1 bankO
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Hardware Implementation

— Checkpointing and wakeup of cores managed by L1 cache controller

— Checkpoint/wakeup sequence:

Ld issued, missed in L2

Sleep signal sent to core

Push data into shadow + power gate
Missing data returns

Wakeup signal sent to core

o s LW~

Reload data from shadow + wakeup
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Attaining Very High Energy Efficiency

Voltage-scalable cores
Dynamic voltage speculation
Pervasive power gating
Control-theoretic controllers
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The Need for Optimal Control

« Extreme scale manycores need effective controllers
— Power, energy, temperature, utilization...

« Current approaches for architectural control and tuning
— Heuristics
— Machine learning
— Control theory

e Josep Torrellas
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Heuristics

&+, Lightweight
2, Popular with architects

2% No guarantees

;;No formal methodology

2 Hard to add learning

2 Prone to errors

\\;{jHard to deal with multiple inputs and/or outputs

I = Josep Torrellas
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Controlling a System with Control Theory
[Pothukuchi ISCA'16]

Sensor

noise
Inputs Outputs

u Y
X(7T+1)=Ax(T)+Lu(7)
Y(T)=Cx(T)+Du(T)

 The modelis {A, B, C, D} + Unpredictability matrices

— Obtained from analytical formulas or experimental
characterization

« Want MIMO control (Multiple Inputs and Multiple Outputs)

Non determinism
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MIMQO Control

« Actuate on multiple inputs: cache size, frequency, #ROB entries
« Control multiple outputs: performance (BIPS), power

BIPS Ref

Power Ref

I-acoma
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Inputs (u)
Cache size Power
Fre
Controller . System | BIPS  Outputs (y)
ROB entries
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Control Theory

% Feedback loop: runtime adaptation to conditions not seen
during training

2 Guarantees: Convergence, Stability, Optimality

2+ Easy to add/remove a new input

\e}{Hard to obtain model

24 Specifying the target values of outputs is not obvious (Power,
- performance)

' Josep Torrellas
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MIMQO Controller Details

« Each input and each output has a cost (or weight)
— Cost of an input: How hard it is to change it from its current value
— Cost of an output: Cost of not meeting the target of the output

« System will try to minimize the changes to costly inputs/outputs
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MIMQO Controller Details

« Relative cost of inputs & outputs controls the inertia of the system
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Uses of the Controller (l)

« Set outputs to target values:
— Performance (BIPS,) and Power (P,)

Inputs (u)
IPS Ref Cache size Power
Fre
Controller . System | BIPS  Outputs (y)
P Ref
OWerie ROB entries
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Uses of the Controller (lI)

« Set outputs to varying target values:

— Changing the quality of service (QoS) as the battery is

depleted in a mobile device
! ! | | | | 120
: : = —v Heuristic

120

|
= - MIMO
100 prmsSs—igny - | === Reference f

100

| === Reference }

B0FTFEy v T e LCTET PR PPl 80 1 '
S S
771 60 @ 60
o o
e e
40 40
Y S S A S
0 | | | | | i 0 | | | | | |
0 2000 4000 6000 8000 100001200014000 0 2000 4000 6000 8000 100001200014000
Epochs (50 p s) Epochs (50 p s)

‘~~—~_ group loward Extreme Scale... B L L LN L O



Uses of the Controller (llI)

« Optimize a combination of output measures:
— Minimize (ExD)= maximize (IPS?/Power)

Propose: Optimizer that searches directly in the space of (IPS?,P)

SW or HW
Optimizer

Iy

B

hd
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Controller System
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Power
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Attaining Very High Energy Efficiency

Voltage-scalable cores
Dynamic voltage speculation
Pervasive power gating
Control-theoretic controllers
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More Energy Efficiency”? Need New Technologies
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If we want energy efficiency, we will get lower performance and
need to rely on more parallelism (many more cores)

Likely a combination of technologies in the same die/stack
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TFET Characteristics

2* Can be fabricated on the same die as CMOS
2 Consumes much less power (4—8x less)
2+, Scalable

}% Not as fast as CMOS (2—4x slower)
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What Will Happen?

« Heterogeneous architectures?

2-D Integration (SoC)

Photonics
High Speed
Memory

High Perf.
Logic

Low Power
Logic

Sensors

3-D Integration (SiP)

— ' Logic
I’ ¢  Memory
Power Reg.

Radio
Sensors

Photonics
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Conclusion

« Energy and power efficiency are the strongest constraints in future
computer architectures
* There is no silver bullet (or perhaps it is V4 reduction)

* Some principles:
— Reduce voltage (safely or taking risks)
— Turn-off if unused
— Minimize waste
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Currently: Big/Little

TARRRRAAAL T

Little Big
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Big/Little Not Optimal

QA Fixed partitioning of cores
22X A fraction of chip unused
2% Migration overhead

Cortex- Cortex- Cortex- Corlex-
A15 A15 A15 A15

Cortex- Conex- Corlex- Cortex-
AT AT A7 AT

Virtual Core 1 Virtual Core 2 Virtsal Core 3 Virtual Core 4
4 4 4
[ Linux Scheduler - 4 SMP cores ]
ARM System
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